
Weighted Distribution for Random Victim Selection
in Distributed Work Stealing

Swann Perarnau, Mitsuhisa Sato

RIKEN AICS, University of Tsukuba

Distributed Work Stealing

I Algorithm for dynamic load balancing.
I Increasingly popular in shared and distributed memory.
IWork is divided in items or tasks.
I An idle process steals work from a busy one.

Workstealing Principle

while not finished do
while task ← getWork(myStack) do

task.run()
end while
while myStack is empty do

v ← selectVictim()
steal(v)

end while
end while

Advantages of Work Stealing

I Fully distributed.
IMost of the scheduling overhead occurs on idle processes.
I Provably efficient.

Issues of Work Stealing on Distributed Systems

ITraditionally assumes uniform access times between processes.
I Ignore data transfers costs.
I Load balancing performance degrades at very large scale.

Our Work

I Change the victim selection process to improve average search time.
IUse network topology knowledge.
I Large scale execution on the K Computer.

K Computer

I Each node is composed of one SPARCVIIIfx with 8 cores.
I 80000+ compute nodes, in 800+ racks.
ITofu proprietary network: 6D mesh torus.

Tofu Network Configuration

A

C

B
Z

Figure: Coordinate system in a Tofu network: A,B,C inside a Tofu unit, X,Y,Z between them.

A New Victim Selection Process

Most implementations use a random selection
process.
IUniform probability to steal each process.
I Provably efficient for shared memory systems.

Our Idea: use network topology information to
weight the probability of a steal.
I Still a random, efficient selection process.
I Ensures eventual discovery/balancing of work.
I Compensate for response latencies between nodes
at large scale.

p(i, j) =
w(i, j)

j 6=i∑
j

w(i, j)
w(i, j) =

{
1

e(i ,j) if e(i, j) 6= 0

1 if e(i, j) = 0

p(i, j): probability of rank i stealing rank j
xi, yi, zi, ai, bi, ci: coordinates in the Tofu of i
e(i, j): euclidean distance between i and j 0 100 200 300 400 500 600 700 800 900 1,000

0

5 · 10−4

1 · 10−3

1.5 · 10−3

2 · 10−3

2.5 · 10−3

3 · 10−3

3.5 · 10−3

4 · 10−3

4.5 · 10−3

Rank

P
ro

ba
bi

lit
y

Figure: Example of the probability distribution function of a rank being
stolen by 0, for a deployment on the K Computer over 1024 MPI
processes, 1 per node.

UTS Benchmark Performance

1024 2048 4096 8192
0

20

40

60

80

100

120

140

160

180

200

MPI Processes

R
un

tim
e

(s
)

Original
Tofu

Half+Original
Half+Rand
Half+Tofu

Figure: 1 MPI process per node.

1024 2048 4096 8192
0

20

40

60

80

100

120

140

160

180

200

220

240

260

MPI Processes

R
un

tim
e

(s
)

Original
Tofu

Half+Original
Half+Rand
Half+Tofu

Figure: 8 consecutive MPI ranks per node.

Experimental Setup

I Public, pure MPI 2 implementation of UTS.
IUTS input is a tree with 157 billions of nodes.
IDefault parameters for benchmark and platform scheduler.

Additional Measurements: 1 MPI Process Per Node

1024 2048 4096 8192
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

MPI Processes

Fa
ile

d
St

ea
ls

(1
09

)

Original
Half+Rand
Half+Tofu

Figure: Number of failed steals.

1024 2048 4096 8192
0

20

40

60

80

100

120

140

MPI Processes

Se
ar

ch
T

im
e

(s
)

Original
Half+Rand
Half+Tofu

Figure: Avg search time per process.

Acknowledgements

Results were obtained by access to the K computer at the RIKEN AICS.
This work was supported by the JSPS Grant-in-Aid for JSPS Fellows Number 24.02711.

RIKEN Advanced Institute for Computational Science Programming Environment Research Team perarnau@riken.jp

